Sains Malaysiana 53(4)(2024): 781-794
http://doi.org/10.17576/jsm-2024-5304-05
Modulation of Human Bone Marrow Mesenchymal Stem Cells
(BMMSC) by Nigella sativa and Trigona Honey: An in vitro Study
(Modulasi Sel Stem Mesenkima Sumsum Tulang Manusia (BMMSC) oleh Nigella sativa dan Madu Trigona: Suatu Kajian in vitro)
MASNIZA
MUHAMAD LASIM1, NURUL FARIHAH SAMSUDIN1, ZETTY NADIA MOHD
ZAIN2, HAYATI ABDUL RAHMAN2, NUR SYAHRINA RAHIM2,
ASRAL WIRDA AHMAD ASNAWI2 & NUR FARIHA MOHD MANZOR1,*
1Department of Medical
Sciences I, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
2Department of Medical
Sciences II, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia
Diserahkan: 27 April 2023/Diterima: 27 Februari 2024
Abstract
Maintenance of bone marrow mesenchymal stem cells
(BMMSC) numbers is crucial for tissue repair and regeneration since adult stem
cells are often limited in number, expansion capacity and lifespan. It is
believed that certain types of foods are beneficial in the preservation and
stimulation of stem cells throughout life. Black seeds and stingless bee honey
are among the widely investigated functional food with general health promoting
benefit. We aim to explore the
proliferative, anti-apoptosis and anti-senescence effect of Nigella sativa and Trigona honey
on BMMSC. Cell proliferation was evaluated using MTT assay. We performed flow cytometric analysis to
verify stem cell surface markers while quantitative PCR was done to measure the
relative expression of target genes. Results
showed favourable concentration dependent enhancement of cell
proliferation by 1 to 10 ug/mL Nigella sativa and 0.097% to 0.195% Trigona honey.
Observation on BMMSC’s morphology and surface markers expression revealed no
alteration on BMMSC stemness properties. In addition,
gene expression analysis supported that there was a significant (P<0.05)
increase in proliferation related gene, β-Catenin, and lower expression of
apoptotic- and senescence-related gene, BAX and p21, respectively. These
preliminary findings suggest a promising effect of Nigella sativaand Trigona honey on stem cell proliferation.
Keywords: Apoptosis; black
seed; bone-marrow mesenchymal stem cells; proliferation; senescence; stingless
bee honey
Abstrak
Pengekalan bilangan sel stem mesenkima sumsum tulang
(BMMSC) adalah penting untuk pembaikan dan penjanaan semula tisu kerana sel
stem dewasa selalunya terhad dalam bilangan, kapasiti pengembangan dan jangka
hayat. Jenis makanan tertentu adalah dipercayai bermanfaat dalam pemeliharaan
dan ransangan sel stem sepanjang hayat. Habbatus sauda dan madu lebah kelulut
adalah antara makanan bermanfaat terhadap kesihatan yang dikaji secara meluas.
Penyelidikan ini bertujuan untuk meneroka kesan proliferatif, anti-apoptosis
dan anti-penuaan Nigella sativa dan madu Trigona terhadap BMMSC.
Proliferasi sel telah dinilai menggunakan ujian MTT. Kami menggunakan analisis
aliran sitometriks untuk mengesahkan penanda permukaan sel stem
manakala PCR kuantitif dilakukan untuk mengukur pengekspresan relatif gen
sasaran. Keputusan menunjukkan proliferasi sel yang menggalakkan dalam
kepekatan sebanyak 1 hingga 10 ug/mL Nigella sativa dan 0.096 hingga 0.195% madu Trigona. Pemerhatian pada morfologi dan ekspresi penanda permukaan BMMSC menunjukkan tiada perubahan pada sifat BMMSC. Tambahan pula, analisispengekspresan gen menyokong bahawa terdapat peningkatan yang ketara (P<0.05) dalam gen proliferatif, β-Catenin manakala gen apoptosis dan gen penuaan, BAX dan p21,
masing-masing menunjukkan ekspresi yang lebih rendah. Penemuan awal ini
mencadangkan kesan memberangsangkan Nigella sativa dan madu Trigona terhadap proliferasi sel stem.
Kata kunci: Apoptosis; Habbatus sauda; madu lebah
kelulut; penuaan; proliferatif; sel stem mesenkima sumsum tulang
RUJUKAN
Ab Rahman,
M.R., Abdul Razak, F. & Mohd Bakri, M. 2014. Evaluation of wound closure activity of Nigella sativa, Melastoma malabathricum, Pluchea indica, and Piper sarmentosum extracts on scratched monolayer of human gingival fibroblasts. Evidence-Based
Complementary and Alternative Medicine 2014: 190342. https://doi.org/10.1155/2014/190342
Abd Jalil, M.A., Kasmuri, A.R. & Hadi, H. 2017. Stingless bee honey,
the natural wound healer: A review. Skin Pharmacology and Physiology 30(2): 66-75. https://doi.org/10.1159/000458416
Ahmed, A.S.I., Sheng, M.H., Wasnik, S., Baylink, D.J. & Lau, K.H.W.
2017. Effect of aging on stem cells. World Journal of Experimental Medicine 7(1): 1-10. https://doi.org/10.5493/wjem.v7.i1.1
Al-Haj, L., Blackshear, P.J. & Khabar, K.S.A. 2012. Regulation of
P21/CIP1/WAF-1 mediated cell-cycle arrest by RNase L and tristetraprolin, and
involvement of AU-Rich elements. Nucleic Acids Research 40(16):
7739-7752. https://doi.org/10.1093/nar/gks545
Al-Rahbi, B., Zakaria, R., Othman, Z., Hassan, A., Mohd Ismail, Z.I. &
Muthuraju, S. 2014. Tualang honey supplement improves memory performance and
hippocampal morphology in stressed ovariectomized rats. Acta Histochemica 116(1): 79-88. https://doi.org/10.1016/j.acthis.2013.05.004
Albajali, A.A., Nagi, A.H., Shahzad, M., Ikram Ullah, M. & Hussain, S.
2011. Effect of Allium sativa L. on pancreatic β. cells in
comparison to Nigella sativa L. in streptozotocin induced diabetic rats. Journal of Medicinal Plant Research 5(24): 5779-5784.
https://www.researchgate.net/profile/Muhammad-Ikram-Ullah /publication/235216807_Effect_of_Allium_sativa_L_ on_pancreatic_b_cells_incomparison_to_Nigella_sativa_L_in_
streptozotocininduced_diabetic_rats/links/560a740e08ae840a08d56442/Effect-of-Allium-sativa-
Alm, J.J., Koivu, H.M.A., Heino, T.J., Hentunen, T.A., Laitinen, S. &
Aro, H.T. 2010. Circulating plastic adherent mesenchymal stem cells in aged hip
fracture patients. Journal of Orthopaedic Research 28: 1634-1642.
https://doi.org/10.1002/jor.21167
Batista de Sousa, J.M., Leite de Souza, E., Marques, G., de Toledo
Benassi, M., Gullón, B., Pintado, M.M. & Magnani, M. 2016. Sugar profile,
physicochemical and sensory aspects of monofloral honeys produced by different
stingless bee species in Brazilian semi-arid region. LWT 65: 645-651.
https://doi.org/10.1016/j.lwt.2015.08.058
Chen,
Y., Xiang, L.X., Shao, J.Z., Pan, R.L., Wang, Y.X., Dong, X.J. & Zhang,
G.R. 2010. Recruitment of endogenous bone marrow mesenchymal stem
cells towards injured liver. Journal of Cellular and Molecular Medicine 14(6 B): 1494-1508. https://doi.org/10.1111/j.1582-4934.2009.00912.x
Czabotar, P.E., Lessene, G., Strasser, A. & Adams, J.M. 2014. Control
of apoptosis by the BCL-2 protein family: Implications for physiology and
therapy. Nature Reviews Molecular Cell Biology 15(1): 49-63.
https://doi.org/10.1038/nrm3722
Dehkordi, F.R. & Kamkhah, A.F. 2008. Antihypertensive effect of Nigella
sativa seed extract in patients with mild hypertension. Fundamental and
Clinical Pharmacology 22(4): 447-452.
https://doi.org/10.1111/j.1472-8206.2008.00607.x
Díez, J.M., Bauman, E., Gajardo, R. & Jorquera, J.I. 2015. Culture of
human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free
cell culture supplement derived from industrial human plasma pools. Stem
Cell Research and Therapy 6(1): 28.
https://doi.org/10.1186/s13287-015-0016-2
Di Renzo, L., Gualtieri, P., Frank, G. & De Lorenzo, A. 2023.
Nutrition for prevention and control of chronic degenerative diseases and
COVID-19. Nutrients 15(10): 2253. https://doi.org/10.3390/nu15102253
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini,
F.C., Krause, D.S., Deans, R.J., Keating, A., Prockop, D.J. & Horwitz, E.M.
2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The
International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315-317. https://doi.org/10.1080/14653240600855905
Eid, A.M., Elmarzugi, N.A., Abu Ayyash, L.M., Sawafta, M.N. & Daana,
H.I. 2017. A review on the cosmeceutical and external applications of Nigella
sativa. Journal of Tropical Medicine 2017: 7092514. https://doi.org/10.1155/2017/7092514
Franceschi, C., Garagnani, P., Morsiani, C., Conte, M., Santoro, A.,
Grignolio, A., Monti, D., Capri, M. & Salvioli, S. 2018. The continuum of
aging and age-related diseases: Common mechanisms but different rates. Frontiers
in Medicine 5: 61. https://doi.org/10.3389/fmed.2018.00061
Ge, Z., Guo, X., Li, J., Hartman, M., Kawasawa, Y.I., Dovat, S. &
Song, C. 2015. Clinical significance of high C-MYC and low MYCBP2 expression
and their association with ikaros dysfunction in adult acute lymphoblastic
leukemia. Oncotarget 6(39): 42300-42311.
https://doi.org/10.18632/oncotarget.5982
Gholamnezhad, Z., Keyhanmanesh, R. & Boskabady, M.H. 2015.
Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella
sativa for its preventive and bronchodilatory effects on obstructive
respiratory diseases: A review of basic and clinical evidence. Journal of
Functional Foods 17: 910-927. https://doi.org/10.1016/j.jff.2015.06.032
Ghonime, M., Eldomany, R., Abdelaziz, A. & Soliman, H. 2011.
Evaluation of immunomodulatory effect of three herbal plants growing in Egypt. Immunopharmacology
and Immunotoxicology 33(1): 141-145.
https://doi.org/10.3109/08923973.2010.487490
Hayati, A.R., Nur Fariha, M.M., Tan, G.C., Tan, A.E. & Chua, K. 2011.
Potential of human decidua stem cells for angiogenesis and neurogenesis. Archives
of Medical Research 42(4): 291-300.
https://doi.org/10.1016/j.arcmed.2011.06.005
Hayflick, L. & Moorhead, P.S. 1961. The serial cultivation of human
diploid cell strains. Experimental Cell Research 25(3): 585-621.
https://doi.org/10.1016/0014-4827(61)90192-6
He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa,
L.T., Morin, P.J., Vogelstein, B. & Kinzler, K.W. 1998. Identification of
C-MYC as a target of the APC pathway. Science 281(5382): 1509-1512.
https://doi.org/10.1126/science.281.5382.1509
Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L.
& Bohr, V.A. 2019. Ageing as a risk factor for neurodegenerative disease. Nature
Reviews Neurology 15(10): 565-581.
https://doi.org/10.1038/s41582-019-0244-7
Junaid, R., Wahid, M., Waseem, F.S., Habib, R. & Hasan, A. 2021.
Effect of glucose mediated oxidative stress on apoptotic gene expression in
gingival mesenchymal stem cells. BMC Oral Health 21(1): 1-13.
https://doi.org/10.1186/s12903-021-02007-y
Kaatabi, H., Bamosa, A.O., Badar, A., Al-Elq, A., Abou-Hozaifa, B., Lebda,
F., Al-Khadra, A. & Al-Almaie, S. 2015. Nigella sativa improves
glycemic control and ameliorates oxidative stress in patients with type 2
diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS
ONE 10(2): e0113486. https://doi.org/10.1371/journal.pone.0113486
Kang, I.N., Lai, S.I., Masniza, M.L., Fong, S.W., Abdul Rahman, I.G. &
Yvone-Tee, G.B. 2015. Identification of valid reference genes for reliable
RT-QPCR in human normal and cancer brain cell lines. Health and the
Environment Journal 6(1): 31-44.
https://www.researchgate.net/publication/292971297_Identification_of_Valid_Reference_Genes_for_Reliable_RT-qPCR_in_Human_Normal_and_Cancer_Brain_Cell_Lines
Karimian, A., Ahmadi, Y. & Yousefi, B. 2016. Multiple functions of P21
in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA
Repair 42: 63-71. https://doi.org/10.1016/j.dnarep.2016.04.008.
Kek, S.P., Chin, N.L., Tan, S.W., Yusof, Y.A. & Chua, L.S. 2017.
Classification of honey from its bee origin via chemical profiles and mineral
content. Food Analytical Methods 10(1): 19-30.
https://doi.org/10.1007/s12161-016-0544-0
Kim, K., Vance, T.M., Chun, O.K. & Kim, D.O. 2017. Effect of green tea
extract on circulating endothelial progenitor cells: A pilot study. Cell
Proliferation 50(2): e12323.
Knösel, T., Altendorf-Hofmann, A., Lindner, L., Issels, R., Hermeking, H.,
Schuebbe, G., Gibis, S., Siemens, H., Kampmann, E. & Kirchner, T. 2014.
Loss of P16(INK4a) is associated with reduced patient survival in soft tissue
tumours, and indicates a senescence barrier. Journal of Clinical Pathology 67(7): 592-598. https://doi.org/10.1136/jclinpath-2013-202106
Li, C.Y., Wu, X.Y., Tong, J.B., Yang, X.X., Zhao, J.L., Zheng, Q.F., Zhao,
G.B. & Ma, Z.J. 2015. Comparative analysis of human mesenchymal stem cells
from bone marrow and adipose tissue under xeno-free conditions for cell
therapy. Stem Cell Research and Therapy 6(1): 55.
https://doi.org/10.1186/s13287-015-0066-5
Li, Y., Gao, Q., Yin, G., Ding, X. & Hao, J. 2012.
WNT/β-catenin-signaling pathway stimulates the proliferation of cultured
adult human sertoli cells via upregulation of C-myc expression. Reproductive
Sciences 19(11): 1232-1240. https://doi.org/10.1177/1933719112447126
Li, Y-M., Schilling, T., Benisch, P., Zeck, S., Meissner-Weigl, J.,
Schneider, D., Limbert, C., Seufert, J., Kassem, M., Schütze, N., Jakob, F.
& Ebert, R. 2007. Effects of high glucose on mesenchymal stem cell
proliferation and differentiation. Biochemical and Biophysical Research
Communications 363(1): 209-215. https://doi.org/10.1016/j.bbrc.2007.08.161
Liu, X. & Zhou, X. 2013. Effect of Wnt/β-catenin and NF-ΚB
signaling pathways on mucus secretion with hypertonicity in 16HBE cells. Brazilian
Archives of Biology and Technology 56(4): 567-574.
https://doi.org/10.1590/S1516-89132013000400006
Majdalawieh, A.F., Hmaidan, R. & Carr, R.I. 2010. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage
function and NK anti-tumor activity. Journal of Ethnopharmacology 131(2): 268-275. https://doi.org/10.1016/j.jep.2010.06.030
Masniza, M.L., Zetty Nadia, M.Z., Nur Syahrina, R., Hayati, A.R., Asral
Wirda, A.A., Fadlul Azim Fauzi, M. & Nur Fariha, M.M. 2020. Date palm fruit
(var. Ajwa) promotes proliferation of human bone marrow mesenchymal stem cells:
Potential natural booster for endogenous stem cells growth. Fruits 75(4): 161-169. https://doi.org/10.17660/th2020/75.4.3
Minutolo, A., Grelli, S., Marino-Merlo, F., Cordero, F.M., Brandi, A.,
MacChi, B. & Mastino, A. 2012. D(-)lentiginosine-induced apoptosis involves
the intrinsic pathway and is p53-independent. Cell Death and Disease 3(7): e358. https://doi.org/10.1038/cddis.2012.97
Nakamura, T., Sakai, K., Nakamura, T. & Matsumoto, K. 2011. Hepatocyte
growth factor twenty years on: Much more than a growth factor. Journal of
Gastroenterology and Hepatology (Australia)26(Suppl 1): 188-202. https://doi.org/10.1111/j.1440-1746.2010.06549.x
Pfaffl, M.W.
2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids. Res. 29(9): e45.
Prasetyaningtyas, W.E., Romadhon, D.P., Susana, F., Djuwita, I. &
Mohamad, K. 2016. Black seed (Nigella sativa) extract induce in vitro
proliferation and differentiation of rat pancreatic and bone cells. Jurnal
Veteriner 17(3): 337-346.
https://www.cabdirect.org/cabdirect/abstract/20173048253
Puca, F., Fedele, M., Rasio, D. & Battista, S. 2022. Role of diet in
stem and cancer stem cells. International Journal of Molecular Sciences 23(15): 8108. https://doi.org/10.3390/ijms23158108
Randhawa, M.A. & Alghamdi, M.S. 2011. Anticancer activity of Nigella
sativa (black seed) - A review. American Journal of Chinese Medicine 39(6): 1075-1091. https://doi.org/10.1142/S0192415X1100941X
Rayess, H., Wang, M.B. & Srivatsan, E.S. 2012. Cellular senescence and
tumor suppressor gene p16. International Journal of Cancer 130(8):
1715-1725. https://doi.org/10.1002/ijc.27316
Reya, T. & Clevers, H. 2005. Wnt signalling in stem cells and cancer. Nature 434: 843-850. https://doi.org/10.1038/nature03319
Rodrigues, M., Griffith, L.G. & Wells, A. 2010. Growth factor
regulation of proliferation and survival of multipotential stromal cells. Stem
Cell Research and Therapy 1(4): 32. https://doi.org/10.1186/scrt32.
Rutledge, G.A., Fisher, D.R., Miller, M.G., Kelly, M.E., Bielinski, D.F.
& Shukitt-Hale, B. 2019. The effects of blueberry and strawberry serum
metabolites on age-related oxidative and inflammatory signaling in vitro. Food and Function 10(12): 7707-7713. https://doi.org/10.1039/c9fo01913h
Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D. & Shimizu, H.
2008. Mesenchymal stem cells are recruited into wounded skin and contribute to
wound repair by transdifferentiation into multiple skin cell type. The
Journal of Immunology 180(4): 2581-2587. https://doi.org/10.4049/jimmunol.180.4.2581
Scheller, M., Huelsken, J., Rosenbauer, F., Taketo, M.M., Birchmeier, W.,
Tenen, D.G. & Leutz, A. 2006. Hematopoietic stem cell and multilineage
defects generated by constitutive β-catenin activation. Nature
Immunology 7(10): 1037-1047. https://doi.org/10.1038/ni1387
Shalini, S., Dorstyn, L., Dawar, S. & Kumar, S. 2015. Old, new and
emerging functions of caspases. Cell Death and Differentiation 22:
526-539. https://doi.org/10.1038/cdd.2014.216
Shen, H., Wang, Y., Zhang, Z., Yang, J., Hu, S. & Shen, Z. 2015.
Mesenchymal stem cells for cardiac regenerative therapy: Optimization of cell
differentiation strategy. Stem Cells International 2015: 524756
https://doi.org/10.1155/2015/524756
Shibuya, M. 2013. Vascular endothelial growth factor and its receptor
system: Physiological functions in angiogenesis and pathological roles in
various diseases. Journal of Biochemistry 153(1): 13-19.
https://doi.org/10.1093/jb/mvs136
Shin, J.S., S.W., Hong, Lee, S.L., Kim, T.H., Park, I.C., An, S.K., Lee,
W.K., Lim, J.S., Kim, K.I., Yang, Y., Lee, S.S., Jin, D.H. & Lee, M.S.
2008. Serum starvation induces G1 arrest through suppression of Skp2-CDK2 and
CDK4 in SK-OV-3 cells. International Journal of Oncology 32(2): 435-439.
https://doi.org/10.3892/ijo.32.2.435
Stolzing, A., Coleman, N. & Scutt, A. 2006. Glucose-induced
replicative senescence in mesenchymal stem cells. Rejuvenation Research 9: 31-35. https://doi.org/10.1089/rej.2006.9.31
Tan, A.W., Liau, L.L., Chua, K.H., Ahmad, R., Akbar, S.A. & Pingguan-Murphy,
B. 2016. Enhanced in vitro angiogenic behaviour of human umbilical vein
endothelial cells on thermally oxidized TiO2 nanofibrous surfaces. Scientific
Reports 6: 21828. https://doi.org/10.1038/srep21828
Xu, S.Z., Zhong, W., Watson, N.M., Dickerson, E., Wake, J.D., Lindow,
S.W., Newton, C.J. & Atkin, S.L. 2008. Fluvastatin reduces oxidative damage
in human vascular endothelial cells by upregulating Bcl-2. Journal of
Thrombosis and Haemostasis 6(4): 692-700.
https://doi.org/10.1111/j.1538-7836.2008.02913.x
Yi, T. & Song, S.U. 2012. Immunomodulatory properties of mesenchymal
stem cells and their therapeutic applications. Archives of Pharmacal
Research 35: 213-221. https://doi.org/10.1007/s12272-012-0202-z
Zaid, S.S.M., Sulaiman, S.A. Sirajudeen, K.N.M. & Othman, N.H. 2010.
The effects of Tualang honey on female reproductive organs, tibia bone and
hormonal profile in ovariectomised rats - Animal model for menopause. BMC
Complementary and Alternative Medicine 10: 82.
https://doi.org/10.1186/1472-6882-10-82
Zainol, M.I., Mohd Yusoff, K. & Mohd Yusof, M.Y. 2013. Antibacterial
activity of selected Malaysian honey. BMC Complementary and Alternative
Medicine 13: 129. https://doi.org/10.1186/1472-6882-13-129
Zhang, D.Y., Wang, H.J. & Tan, Y.Z. 2011. Wnt/β-catenin signaling
induces the aging of mesenchymal stem cells through the DNA damage response and
the p53/p21 pathway. PLoS ONE 6(6): e21397.
https://doi.org/10.1371/journal.pone.0021397
Zhang, R., Liu, Y., Yan, K., Chen, L., Chen, X.R., Li, P., Chen, F.F.
& Jiang, X.D. 2013. Anti-inflammatory and immunomodulatory mechanisms of
mesenchymal stem cell transplantation in experimental traumatic brain injury. Journal
of Neuroinflammation 10: 871. https://doi.org/10.1186/1742-2094-10-106
Zhao, S.
& Fernald, R.D. 2005. Comprehensive algorithm for quantitative real-time
polymerase chain reaction. J. Comput. Biol. 12(8): 1047-1064.
Zhuo, Z., Zhang, L., Mu, Q., Lou, Y., Gong, Z., Shi, Y., Ouyang, G. &
Zhang, Y. 2009. The effect of combination treatment with docosahexaenoic acid
and 5-fluorouracil on the MRNA expression of apoptosis-related genes, including
the novel gene BCL2L12, in gastric cancer cells. In Vitro Cellular and
Developmental Biology - Animal 45(1-2): 69-74.
https://doi.org/10.1007/s11626-008-9154-5
*Pengarang untuk surat-menyurat; email:
nurfariha@usim.edu.my
|